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Abstract 

Texts presenting novel numerical data can shift learners’ attitudes and conceptions about 

controversial science topics. However, little is known about the mechanisms underlying this 

conceptual change. The purpose of this study was to investigate two potential mechanisms that 

underlie learning from novel data: numerical estimation skills and epistemic cognition. This 

research investigated combinations of two treatments—a numerical estimation and epistemic 

cognition intervention—that were designed to enhance people’s ability to make sense of key 

numbers about climate change when integrated into an existing intervention. Results indicated 

that undergraduate students (N = 516) who engaged with climate change data held fewer 

misconceptions compared to a group that read an expository text, though their judgments of 

climate change plausibility were similar. Results also showed that the two modifications to the 

central intervention did not have statistically significant effects on knowledge or plausibility 

when compared with the unmodified intervention. However, we found that individuals’ openness 

to reason with and integrate new evidence significantly moderated the knowledge effects of the 

intervention when the intervention was supplemented with both modifications. These findings 

provide emerging evidence that, among those who are open to reason with new evidence, 

supporting mathematical reasoning skills and reflection on discrepant information can enhance 

conceptual change in science. 

Keywords: conceptual change, epistemic cognition, numerical estimation, plausibility 

judgments 
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Educational Impact and Implications Statement 

Individuals are often exposed to data about scientific topics in news and information read online. 

This study advances the idea that presenting people with novel scientific data after they estimate 

those quantities can be a catalyst for scientific learning. We found that encouraging estimation 

and reflection on those estimates reduced misconceptions about climate change for individuals 

who were predisposed to be open minded to new evidence. Findings suggest that novel data 

supports learning, and that dispositions toward reasoning play an important role in whether 

individuals gain from estimation instruction and active reflection. 
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Supporting Climate Change Understanding With Novel Data, Estimation Instruction, and 

Epistemic Prompts  

Misconceptions about controversial science topics are widespread. For example, as of 

2020, only 55% of adults in the USA correctly believe that most scientists think that climate 

change is happening, meaning that the remaining 45% hold a serious misconception (Marlon et 

al., 2020). Fortunately, there are several approaches that exist to shift these misconceptions. 

Numerical data found in the news or online can be a powerful tool for changing minds 

about relevant science topics. For example, we encourage you to take a moment to estimate in 

your head the following quantity: What is the percentage change in the world’s ocean ice cover 

since 1960? While you may or may not be surprised at the true value (see footnote),1 

presentation of novel data in this way can elicit explicit reflection on the meaning of novel 

evidence and integration of supported claims. In this way, prompting people to estimate just a 

handful of numbers about climate change before presenting them with the actual values can shift 

their attitudes, beliefs, and misconceptions to be more aligned with scientists (Ranney & Clark, 

2016). This instructional technique can shift people’s attitudes, beliefs, and conceptions to be 

more aligned with scientists (Ranney & Clark, 2016; Rinne et al., 2006), suggesting that 

numerical data can be used as a catalyst for conceptual change. However, despite the benefits of 

this intervention, the mechanisms that underlie this change process remain understudied. 

We propose that numerical estimation skills and epistemic cognition (active reflection on 

what is known) may be important mechanisms. To initially estimate a “real-world” quantity, a 

skilled learner might draw from their prior knowledge, make use of known quantities, and 

mathematically manipulate them to arrive at their estimate (e.g., Reys & Reys, 2004; Siegler, 

 
1 The change in world’s ocean ice cover since 1960 is a 40% decrease (Ranney & Clark, 2016). 



SUPPORTING CLIMATE CHANGE UNDERSTANDING WITH NOVEL DATA          5 

2016). An explicitly crafted estimate of this sort might better prepare the learner to interpret and 

assess the validity of a scientifically accepted value when later presented with it (c.f., Lombardi, 

Nussbaum, et al., 2016; Richter & Maier, 2017). Furthermore, if learners are explicitly prompted 

to reflect on differences between their estimate and the true value, such explicit evaluations 

might lead them to reconsider the plausibility of associated claims, and potentially revise their 

pre-existing conceptions (Lombardi, Nussbaum, et al., 2016). In this way, numerical estimation 

skill and reflection on what is known (epistemic cognition) might be two important mechanisms 

involved in conceptual change from novel data.  

The purpose of this study was to develop a set of interventions that investigate 

mechanisms that may underlie the learning that occurs when people encounter novel data. 

Namely, we draw from theory on plausibility judgments for conceptual change (Lombardi, 

Nussbaum et al., 2016), and epistemic cognition (active reflection on whether information is true 

or justified; Chinn et al., 2014) to examine the impact of two mechanisms of conceptual change 

when learning from real-world numbers—numerical estimation skills and epistemic cognition. 

To accomplish this, we created two micro-interventions to modify an existing intervention, and 

then investigated four combinations of these two modifications and compared their effects to a 

comparison group that read an expository text. We also investigated whether emotional, 

motivational, and dispositional factors would moderate the effects of these interventions. 

Theoretical Framework 

Conceptual Change and Plausibility Judgments 

When individuals encounter numerical data that conflict with their prior conceptions, 

conceptual change may occur. Conceptual change represents learning that occurs when new 

information conflicts with a learners’ background knowledge, and conceptual knowledge is 
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changed in some fashion (Dole & Sinatra 1998; Murphy & Mason, 2006). Researchers describe 

conceptual knowledge as either consistent or inconsistent with scientific explanations and thus, 

may define conceptual change as a reduction in scientifically inaccurate conceptions, or 

misconceptions. There are many definitions and operationalizations of conceptual change. Here, 

we consider the shifting of conceptual knowledge to be more aligned with scientific conceptions 

and less aligned with misconceptions to be conceptual change (Dole & Sinatra, 1998). For 

example, if a person holds the misconception that there is no scientific consensus that humans 

are contributing to climate change and reads a statement that “97% of scientists agree that 

climate change is caused by humans,” then there may be potential for the learner to question 

their understanding and shift their conceptions about the scientific view. In this way, the meaning 

communicated by even a single number has the potential to prompt conceptual change (i.e., 

which we operationalize as greater alignment with scientific explanations and less with the 

misconception; Ranney & Clark, 2016). Conceptual change can be viewed as a process that is 

contingent upon characteristics of the information, such as its coherence and characteristics of 

the learner, such as their motivation, emotion, and attitudes (also called warm constructs; Dole & 

Sinatra, 1998; Pintrich et al., 1993; Sinatra, 2005; Sinatra & Seyranian, 2016).  

Conceptual Change 

Dole and Sinatra’s (1998) Cognitive Reconstruction of Knowledge Model (CRKM) 

discerns between characteristics of the learner and those of the “message” (e.g., learning 

materials). These characteristics shape whether the learner will engage with the message and 

subsequently shift their conceptions to be more aligned with the scientific consensus (i.e., 

undergo conceptual change). Learner characteristics include the strength and coherence of an 

existing conception along with the learners’ commitment to it; and epistemic motives and 
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dispositions—inclinations toward a particular view of knowledge, such as a need for closure, 

openness to understand novel arguments, and dissatisfaction with current understanding. 

message characteristics refer to the learners’ perceptions of information as: coherent, 

comprehensible, and compelling, and the claims supported by that information as being 

plausible. For example, an individual that encounters novel climate change data might shift their 

conception depending on: characteristics of the information (if it is coherent, comprehensible, 

compelling), plausibility of the claims supported by that novel information, and their cognitive 

and motivational state (e.g., if they find their conception dissatisfactory in light of the new data).  

Plausibility Judgments for Conceptual Change 

For individuals to change their mind about climate change based on novel data, they must 

first judge the information to be valid and the claims to be plausible. Plausibility can be defined 

as a tentative perception of the potential truth of a claim and plays an important role in 

conceptual change. The Plausibility Judgments for Conceptual Change (PJCC) model posits that 

novel information can incite conceptual change because it prompts learners to appraise or 

reappraise the plausibility of their existing beliefs and potentially correct misconceptions 

(Lombardi, Nussbaum, et al., 2016; this process is illustrated in Figure 1).  

[INSERT FIGURE 1 AROUND HERE] 

Individuals first preprocess information for validity prior to forming a plausibility 

judgment. Building from earlier models of plausibility, Lombardi’s model posits that views of 

source validity depend on perceptions of corroboration and complexity of evidence, perceived 

conjecture, perceptions of source credibility, and heuristic rules and biases (Connell & Keane, 

2006; Rescher, 1976). For example, preprocessing may involve numerical estimation heuristics 

employed by the learner to process the validity of numerical answers to math problems (e.g., 
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Aljami & Reys, 2009; LeMaire & Fayol, 1995; Siegler, 2016). In such a way, we expected that 

estimation skills would support processing of novel data. The Two Step-Model of validation 

(Richter & Maier, 2017) adds nuance to the idea of processing source validity. The model posits 

that people validate information either routinely (Step 1) by relying on implicit plausibility 

judgments of belief-consistent information, or (Step 2) by elaborating on belief-inconsistent 

information. Such elaboration involves greater attention, working memory, integration of 

background knowledge, and can be activated by specific goals or epistemic motives. Findings 

from a systematic review of the literature show that belief-inconsistent information tends to 

receive less attention than belief-consistent information when individuals engage with texts that 

do not agree with their prior beliefs (Richter & Maier, 2017). However, elaboration and deeper 

processing of belief-inconsistent information can be improved with prompts to elaborate on 

inconsistencies, inclusion of rationales for activities, and are moderated by reader characteristics 

(e.g., beliefs about incorporating new evidence).  

After preprocessing information for validity, a plausibility judgment of the claims 

supported by the evidence is made either via implicit or explicit processing (Lombardi, 

Nussbaum, et al., 2016). The extent to which an individual engages explicit processing to 

evaluate plausibility depends on motivational factors (e.g., interest or self-efficacy), topic 

emotions (e.g., mathematics anxiety), and “epistemic dispositions and motives” (e.g., the 

learners’ openness to reason with new evidence). Explanations that are perceived to be more 

plausible than alternatives have greater potential for conceptual change (Lombardi, Nussbaum, 

et al., 2016; Dole & Sinatra, 1998). When a learner views an explanation as less plausible than 

their background knowledge, they are more likely to maintain their existing conception. In 

contrast, explanations perceived to be more plausible than prior conceptions have strong 
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potential for conceptual change, though change is not guaranteed. For example, a student that 

encounters compelling climate change data may come to perceive the human induced climate 

change hypothesis as plausible, but may have an overriding commitment to their previous 

conception based on social group membership (Dole & Sinatra, 1998). However, with new 

evidence or contextual prompts, these plausibility judgments can be revisited and reappraised 

with more explicit levels of evaluation and greater potential for conceptual change. For example, 

a reappraisal cue might be a prompt for learners to explicitly consider novel climate change 

numbers in comparison with their own estimates. Such plausibility reappraisals are thought to be 

particularly important for conceptual change about controversial science topics where there may 

exist a “plausibility gap” between what scientists and what laypeople perceive as plausible 

(Lombardi & Sinatra, 2013).  

Empirical research in the domain of science education has found strong links between 

perceptions of plausibility and conceptual change. Lombardi and Sinatra (2012) found that 

undergraduate students in a science course devoted to the topic of climate change had fewer 

misconceptions about deep-time and found human induced climate change to be more plausible 

compared with students in a typical intro-science course. In a follow up study, Lombardi, 

Danielson, and Young (2016) experimentally tested whether prompting undergraduate students 

to reflect on their own climate change knowledge would promote plausibility reappraisals. They 

found that students assigned to read a text that prompted reflection on their misconceptions rated 

scientific explanations of climate change as more plausible (d = 0.43) and had fewer 

misconceptions (d = 0.47) at posttest compared to students who read an expository text.  

Theory and evidence also suggest that motivation, emotion, and epistemic dispositions 

are associated with plausibility judgments and conceptual change outcomes (e.g., Dole & 
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Sinatra, 1998; Lombardi, Nussbaum, et al., 2016; Lombardi & Sinatra, 2013; Sinatra, 2005). 

Lombardi and Sinatra (2013) found that teachers’ initial plausibility judgments related to climate 

change were associated with their topic emotions (emotions that relate specifically to the topic of 

instruction) and epistemic motives (motivation related to goals and dispositions toward 

knowledge, such as “need for closure”). The authors found that teachers’ anger towards teaching 

climate change and their need for closure both negatively and significantly predicted plausibility 

perceptions of human induced climate change. Thus emotions, motivation, and dispositions play 

a role in how plausibility judgments are formed and may help explain how people learn from 

numerical data. 

Numerical Estimation 

How do people make sense of and learn from novel policy-relevant quantities? Research 

on number concept, magnitude knowledge, and numerical estimation might help identify 

mathematical skills that are useful for individuals to make sense of numerical information (Case 

& Sowder, 1990; Dehaene, 2011; McIntosh et al., 1992; McIntosh & Sparrow, 2004; Siegler, 

2016; Sowder, 1992; Sowder & Wheeler, 1989). Number concept (or “number sense”) can be 

defined as a person’s understanding of quantities and operations and involves many skills that 

are particularly useful for interpreting and making meaning out of numbers found in day-to-day 

experience (Dehaene, 2011; Mcintosh et al., 1992). Understanding and estimating magnitudes of 

quantities and drawing meaning from them is considered to be central to the development of 

number concept (Siegler, 2016) and is a particularly important skill in science, thus comprising 

an important intersection between mathematics and science K-12 standards (Cheuk, 2012). For 

the purpose of understanding how individuals interpret numbers about climate change, we focus 
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our research on a domain of number concept that is often employed in informal settings and 

considered useful for plausibility judgments and conceptual change: numerical estimation. 

Numerical estimation can be defined as an educated guess for a quantity that potentially 

draws from an individual’s understanding of number, operations, and prior experiences (Dowker, 

2005). Numerical estimation is used as a central indicator of numerical and cognitive 

development (e.g., Siegler, 2016), is reflected in the Common Core State Standards (CCSS, 

2012). Adults and children who consistently make accurate estimations also tend to have good 

mathematical conceptual understandings and arithmetic skills (LeFevre et al., 1993; Park & 

Brannon, 2013; 2014; Booth & Siegler, 2008), greater working memory (Case & Sowder, 1990; 

Friso-van den Bos et al., 2013; Hecht & Vagi, 2010), and higher standardized test scores in 

mathematics (Booth & Siegler, 2006; Sasanguie et al., 2012; Siegler & Booth, 2004).  

Estimation skills are traditionally divided into three categories: (a) computational 

estimation (estimates of computational problems), (b) numerosity (estimates based on sensory 

perception), and (c) measurement estimation (Reys & Reys, 2004; Sowder, 1992), the latter of 

which is most relevant for this study. Namely, measurement estimation concerns the explicit 

estimation of real-world measures (Bright, 1976; Joram et al., 2005; Sowder & Wheeler, 1989) 

and is useful for understanding factors that help people judge whether real-world quantities are 

valid and reasonable. Findings suggest that peoples’ estimation accuracy and judgments of 

reasonableness improve when they use measurement estimation strategies. Measurement 

estimation skills may therefore support learners’ comprehension and evaluation of given real-

world quantities. For this study we created an intervention to support learners’ use of the 

benchmark strategy—a tool for building associations and analogies—in order to impact the depth 

to which they draw meaning from numbers about climate change. 
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Analogies, Associations, and the Benchmark Strategy 

Estimation accuracy and number concept improve as people make associations and 

analogies between symbolic notation and non-symbolic referents. The Integrated Theory of 

Numerical development (Siegler, 2016) proposes that numerical understanding and numerical 

estimation accuracy develop as individuals come to represent non-symbolic magnitudes and 

connect them to symbolic representations of magnitude. Two central mechanisms in facilitating 

this process are establishing associations of numerical symbols with non-symbolic referents 

(such as associating numbers with objects, gestures, or other phenomena) and mapping 

representations to one another by analogy (e.g., extending knowledge of one mathematical 

system or representation to another).  

An example of analogy and association is when people extend their understanding of 

known numbers to estimate unknown numbers. This strategy has been termed the “Benchmark 

strategy”—the use of given standards and facts that can be applied by the learner through mental 

iteration and proportional reasoning to better estimate and judge the plausibility of real-world 

quantities (e.g., Brown & Siegler, 2001; Dowker, 2005; Joram et al., 1998; Joram et al., 2005). 

The use of benchmark values in estimation is thought to involve (1) creating a “mental image” of 

some benchmark quantity like a standard unit of measurement, and (2) comparing it with the 

quantity to be estimated (e.g., by scaling the value using “unit iteration;” Joram et al., 2005). For 

example, when estimating the mass of global CO2 emissions in 2014, it might be helpful to first 

know that the USA emitted about 5 gigatons of CO2 that same year (Quéré et al., 2016). Given 

this benchmark quantity, one can then scale the value by a factor that they find plausible to 

estimate the unknown quantity. Lab-based experiments with undergraduate students suggest that 

exposure to benchmark values can improve the accuracy of estimates of distances between two 
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cities (Brown & Siegler, 2001), other everyday quantities (Brown & Siegler, 1993, 1996, 

Friedman & Brown, 2000, Joram et al., 2005), and quantities specifically regarding climate 

change (Ranney & Clark, 2016). As such, benchmark strategies have immediate educational 

implications in that teaching students a small number of relevant facts can greatly improve their 

measurement estimations and judgments of plausibility. 

However, mere exposure to benchmark values does not guarantee that individuals will 

apply benchmark strategies in relevant situations. Hildreth (1983) found that college freshman 

and elementary students do not spontaneously employ benchmark strategies or similar strategies 

very often to solve measurement estimation problems. However, direct instruction with worked 

examples on how and when to use benchmark strategies can increase frequency of strategy use 

and improve estimation accuracy (Hildreth, 1983; Joram et al., 2005). Thus, it is not only 

important for individuals to be given benchmarks required to make good estimates and identify 

plausible values, but they should also be given instruction regarding how and when to apply 

those skills. Yet, despite research showing that numerical estimation is an important aspect of 

number development and competency in mathematics and science, and that development can be 

supported by emphasizing associative/analogical processes such as the benchmark strategy, there 

is very little research on how these processes might support learning from policy-relevant data.  

Epistemic Cognition 
Another skill that is thought to contribute to improved plausibility judgments and 

conceptual change is that of epistemic cognition—the thinking that people do about knowledge 

and knowing (Chinn, et al., 2014; Greene et al., 2016; Sandoval et al., 2016). Epistemic 

cognition is hypothesized to predict the extent to which learners evaluate the plausibility of a 
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claim in light of new information, leading to greater potential for conceptual change (Lombardi, 

Nussbaum, et al., 2016). There are multiple models of epistemic cognition (for a review, see 

Greene et al., 2016), in this section we review two framings that are relevant to this study—

epistemic dispositions (which focus on stable, trait-level beliefs about the nature of knowledge 

and knowing) and a more dynamic and context sensitive view of epistemic cognition. 

Epistemic Dispositions 

Epistemic dispositions refer to an individual’s relatively stable perspectives about 

knowledge and knowing and are expected to moderate conceptual change outcomes. Theory 

predicts that constructivist epistemic dispositions prepare people to more explicitly evaluate 

novel information and integrate implicated claims into their existing belief structures (Lombardi, 

Nussbaum, et al, 2016). For example, undergraduate students’ and adults’ openness to evaluate 

novel evidence and willingness to revise their existing beliefs, as captured using a seven-item 

questionnaire called the “Active Open-Minded Thinking” scale, has been shown to highly 

correlate with their ability to evaluate the validity of and learn from novel arguments (e.g., 

Stanovich & Toplac, 2019; Stanovich & West, 1997). Active open-minded thinking is also 

considered to be a focal epistemic disposition when engaging in probabilistic and statistical 

reasoning (Stanovich, 2013). People with higher levels of active open-minded thinking might be 

expected to more explicitly evaluate novel, belief-inconsistent information when prompted to do 

so, rather than attending to information consistent with their prior beliefs (Richter & Maier, 

2017). Such explicit processing is linked with more thoughtful plausibility judgments and greater 

potential for conceptual change (Lombardi, Nussbaum, et al., 2016). Based on this theory and 

evidence, constructivist epistemic dispositions might be expected to moderate the effects of 
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interventions that present novel data, especially among interventions that explicitly prompt 

reflection on belief-discrepant information.  

A Context-Sensitive View of Epistemic Cognition 

Other perspectives view epistemic cognition as a dynamic process that is sensitive to 

context, involves motivational variables such as aims and goals, and relies on schema that 

develop over time (Chinn et al., 2014; Sinatra, 2016). For example, according to the AIR model, 

epistemic cognition is a situated process that relies on individuals’ Aims (goals and associated 

values of goals), Ideals (espoused standards for achieving epistemic aims), and Reliable 

processes for knowing (schemas for producing true, justified beliefs; Chinn et al., 2014). For 

example, when people read a text, they may not always seek truth or justification from the text 

that they encounter (an epistemic aim) but may instead be reading for pleasure or memorization 

(both non-epistemic aims). We created an intervention intended to activate learners’ epistemic 

aims by asking participants to reflect on their knowledge and articulate whether discrepancies 

between their initial estimates and the true value changed their ideas about climate change (see 

Appendix I). We expected that such prompts would encourage people to slow down and reflect 

on their own understanding in light of new data and that such reflection would prompt re-

evaluation of their conceptions.  

Though the approach of activating epistemic aims is relatively new, there is some 

evidence that shorter, single session interventions can be effective at shifting epistemic aims. For 

example, a recent study by Hendriks et al. (2021) made use of an experimental manipulation 

using slightly different instructions in a survey that seemed to successfully shift the epistemic 

aims of pre-service teachers in Germany to either attend to theoretical explanations or attend to 

practical advice from a text (Hendriks et al., 2021). The manipulation revealed significant 
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differences in perceived expertise, integrity, and benevolence of the expert who had written the 

text. Yet, while research has explored the effects of manipulating epistemic aims on perceived 

credibility and validity of a text source, little research has explored their effects on plausibility 

evaluations and conceptual change. Further, little research has sought to investigate whether such 

prompts are effective when individuals learn from numerical data about climate change. As such, 

we designed an intervention intended to activate epistemic aims and improve explicit evaluation 

of data and readiness to apply mathematical principles to interpret climate change numbers.  

An Existing Learning Intervention: EPIC 

Prior classroom and laboratory studies have demonstrated the impact of presenting 

people with surprising numbers about controversial topics on their understanding of social issues 

(for reviews, see Ranney et al., 2019; Yarnall & Ranney, 2017). Many of these studies are 

grounded in a paradigm called “Numerically Driven Inferencing” (NDI, Ranney et al., 2001; 

Ranney & Thagard, 1988), which assumes that individuals’ understanding of numerical 

information is connected to their knowledge, attitudes, and beliefs about larger issues. One of the 

central techniques from this perspective is called EPIC, an acronym for an intervention which 

introduces novel numerical information by prompting learners to Estimate quantities, state a 

Preference for what they would like the quantity to be, Incorporate the answer, and then Change 

their preferences afterward (e.g., Ranney & Clark, 2016; Rinne et al., 2006). Studies that use 

EPIC often operationalize conceptual change in terms of shifts in the preferences that individuals 

state for given numbers (i.e., differences between the “P” and the “C” in EPIC). In other words, 

studies in this paradigm measure learning and conceptual change in terms of changes in 

individuals’ policy preferences. However, despite many studies demonstrating that variations on 

EPIC interventions lead individuals to shift their policy preferences regarding climate change, 
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the question remains as to whether EPIC can shift explicitly stated scientific misconceptions and 

plausibility perceptions of scientifically accepted claims. Furthermore, prior EPIC studies 

provide little information regarding the validity and reliability of conceptual change scales. This 

raises another question as to whether conceptual changes that occur as a result of an EPIC 

intervention focused on climate change might also be detected when using valid and reliable 

measures for capturing climate change knowledge. 

Potential Moderators  

Few studies have explored moderating effects of emotions, motivation, and epistemic 

dispositions when people learn from novel data. In this section, we argue that mathematics 

anxiety, self-efficacy, and epistemic dispositions may be important moderators in this learning 

process. 

Mathematics Self-Efficacy and Mathematics Anxiety  

Mathematics self-efficacy is defined as individuals’ beliefs or perceptions regarding their 

abilities in mathematics (Bandura, 1997), and is linked with motivation to learn, persistence on 

challenging tasks, and academic achievement (Pajares & Graham, 1999; Zeldin et al., 2008). For 

example, findings suggest that mathematics self-efficacy is strongly associated with college 

students’ mathematics achievement (Hall & Ponton, 2005; Higbee & Thomas, 1999).  

Mathematics anxiety can be defined as “feelings of tension and anxiety that interfere with 

the manipulation of numbers and the solving of mathematical problems in a wide variety of 

ordinary life and academic situations” (Richardson & Suinn, 1972; p.551). Mathematics anxiety, 

while representing only one of many possible emotional constructs that might be relevant in 

learning situations (c.f. Muis et al., 2018), was chosen because it might interfere with 

mathematical aspects of student learning; it is associated with college students’ negative attitudes 
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and emotions toward mathematics (Jackson & Leffingwell, 1999) and decreased level of 

mathematical achievement and computational fluency (Cates & Rhymer, 2003).  

Findings from research on mathematics self-efficacy and mathematics anxiety is 

consistent with plausibility judgments in conceptual change research. The Plausibility Judgments 

for Conceptual Change model assumes that motivation and emotion shape the degree to which 

individuals critically engage with learning material (Lombardi, Nussbaum, et al, 2016). Negative 

emotions and motivational states—like mathematics anxiety and low mathematics self-

efficacy—impede focus, bear on working memory (e.g., Ramirez et al, 2018), and may 

potentially interfere with explicit evaluations of belief-inconsistent arguments and decrease the 

likelihood of conceptual change (Lombardi, Nussbaum, et al., 2016). Therefore, we expected that 

participants with higher levels of mathematics anxiety and low levels of mathematics self-

efficacy will be less likely to deeply engage in mathematical thinking when presented with 

numerical estimation instruction and during estimation tasks.  

Epistemic Dispositions 

As previously noted, theory posits that epistemic dispositions are linked to explicit 

plausibility judgments and higher potential for conceptual change (Lombardi, Nussbaum, et al., 

2016). Specifically, active open-minded thinking—openness to evaluate novel evidence and 

revise existing beliefs—is an epistemic disposition that is associated with explicit evaluations of 

novel arguments (e.g., Stanovich & Toplac, 2019; Stanovich & West, 1997). For this reason, we 

expected that active open-minded thinking would moderate the learning effects of the EPIC 

intervention, especially among conditions that explicitly prompted participants to compare their 

understanding with new evidence.  

Current Study 
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In sum, we contend that in order for learners to attend to and learn from novel 

information, they must develop the estimation skills necessary to accurately evaluate data that 

they encounter as well as the skills to evaluate epistemic aspects that information. That is, they 

must learn numerical estimation skills and the skills associated with epistemic cognition. 

Currently, there is no empirical research that we could find that investigates the role of 

estimation skills and epistemic cognition in conceptual change processes. Further, there is little 

research investigating applications of numerical estimation skills to support learning of socio-

scientific topics. For the current study, we created variants of an intervention that presents people 

with novel data about climate change by modifying the intervention to experimentally 

manipulate either estimation skill, epistemic cognition, both, or neither. This combination of 

modifications was intended to improve people’s readiness to apply mathematical principles for 

comparing and interpreting climate change numbers, as well as to prompt explicit evaluations of 

belief-inconsistent data. Our research is guided by five questions: 

1. To what extent does estimation of and exposure to novel climate change data (i.e., an 

adapted version of the EPIC intervention) improve learners’ (a) knowledge of climate 

change and (b) plausibility judgments compared with reading an expository text? 

2. To what extent does enhancing this intervention with instruction on estimation strategies 

change learners’ (a) knowledge and (b) plausibility judgments of climate change? 

3. To what extent does enhancing this intervention with prompts to activate epistemic aims 

change learners’ (a) knowledge and (b) plausibility judgments of climate change? 

4. Is there an interaction between the effects of the estimation skills and epistemic aims 

modifications on (a) knowledge and/or (b) plausibility judgments of climate change? 
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5. To what extent do mathematics anxiety, mathematics self-efficacy, and epistemic 

dispositions moderate the effects of the intervention and variants on knowledge, 

plausibility, and estimation skill? 

Hypotheses 

Based on prior research (Lombardi, Nussbaum, et al., 2016; Ranney & Clark, 2016), we 

first hypothesized that undergraduate students assigned to the EPIC intervention conditions 

would have (H1a) greater climate change knowledge and (H1b) perceive the human induced 

climate change hypothesis to be more plausible when compared with the comparison group. 

Such findings would partly reproduce results of Ranney and Clark (2016) and support the 

Plausibility Judgments for Conceptual Change model (Lombardi, Nussbaum, et al., 2016). 

Second, we hypothesized that supplementing the EPIC intervention with instruction on 

estimation skills would lead to (H2a) greater knowledge and (H2b) heightened plausibility 

perceptions compared with EPIC conditions that did not include estimation instruction. These 

hypotheses were drawn from the Plausibility Judgments for Conceptual Change model which 

suggests that prompting validity processing heuristics would potentially lead to higher levels of 

explicit evaluation of plausibility (Lombardi, Nussbaum, et al., 2016). Third, we hypothesized 

that EPIC modified with prompts to activate epistemic aims would predict (H3a) better 

knowledge outcomes and (H3b) greater perceptions of plausibility in the human induced climate 

change hypothesis compared with EPIC conditions that were unmodified. We made this 

prediction because prompts intended to activate undergraduate students’ epistemic aims are 

expected to lead to more explicit evaluations of information (Chinn et al., 2014) and predict 

more explicit plausibility judgments and greater conceptual change, as hypothesized by the 
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Plausibility Judgments for Conceptual Change model. Fourth, we predicted that improving both 

students’ estimation skills and epistemic cognition would predict the best (H4a) knowledge 

outcomes and (H4b) plausibility perceptions. As predicted by Lombardi and colleagues, (2016) 

we anticipated that leveraging data-processing heuristics and explicit reflection on the arguments 

supported by the data would lead to the greatest conceptual change. We had no specific 

hypotheses for our fifth research question, which was exploratory. 

Methods 

To answer our research questions, we formed a national Qualtrics panel of undergraduate 

students to participate in an experimental online survey. Qualtrics, a third-party vendor, 

distributed email invitations and a total of 2,856 responses were recorded, 2,187 (67%) of them 

were not eligible to participate in the study because they were not a full-time undergraduate 

student or were under 18 years, and 153 (7%) were not included in analyses because they either 

did not pass an attention check at the beginning of the survey or they were flagged as a “speeder” 

based on an algorithm used by Qualtrics (see Supplementary Materials for details). The 

remaining 516 (18%) of participants fully completed the survey and were retained as the full 

analytic sample. There was no missing data. We ran a post-hoc sensitivity analysis using GPower 

to assess the minimum detectable effect for our most demanding hypothesis with respect to 

sample size, which revealed that we were able to detect an effect size of 0.153 for a five-group 

ANCOVA with power of .8 and alpha level of .05 (Erdfelder et al., 1996). Additional 

methodological details and results are provided in the Supplementary Materials. Study materials, 

data, and analysis syntax are available at https://bit.ly/3xcBjUQ. 

Participants’ median reported age was 20 years, and 81% identified as Female, 16% 

Male, 2% reported their gender as “Other” or “Prefer not to say,” 64% White, 11% African 



SUPPORTING CLIMATE CHANGE UNDERSTANDING WITH NOVEL DATA          22 

American, 9% Asian, 9% Hispanic, and 43% as either Liberal or Very Liberal. We sampled from 

multiple locations across the United States to obtain a sample that is representative of the general 

public regarding their baseline beliefs about climate change (i.e., 70% agreed or strongly agreed 

that “Earth’s climate is currently changing”; for details, see Supplemental Materials, Sampling 

Strategy). All participants (a) completed a pretest to measure their misconceptions about climate 

change, mathematics self-efficacy and anxiety, and prior epistemic dispositions, (b) were 

randomly assigned to one of five conditions created by a comparison group and combinations of 

two interventions (see below), and (c) completed an identical post-test of knowledge and a 

demographics questionnaire. 

Outcome Measures 

Knowledge  

Knowledge of human-induced climate change was a primary outcome in this study and 

was measured using seven items from the 28-item Human Induced Climate Change Knowledge 

questionnaire (HICCK, hereafter referred to as “the knowledge measure;” Lombardi et al., 2013; 

see Supplemental Materials, Appendix A). Construct and content validity of the abbreviated 

scale was established through pilot studies and cognitive interviews. The knowledge 

questionnaire was given to participants just prior to and immediately after instruction and was 

intended to measure participants’ conceptions about the scientific consensus on human-induced 

climate change and items were selected to align with information presented in the EPIC 

intervention. For example, participants rated to what extent climate scientists agree with 

statements such as, “greenhouse gas levels are increasing in the atmosphere” on a scale from 1 

(strongly disagree) to 5 (strongly agree). Agreement with such a statement reflects a correct, 

verifiable conception about the scientific consensus, while disagreement represents a 
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misconception. As such, knowledge shifts are thought to represent changes in misconceptions 

regarding what scientists endorse. Note that such knowledge of scientific consensus is different 

from, but related to, personal acceptance of climate change (e.g., Hornsey et al., 2016; 

Lewandowsky et al., 2013). The measure at pre and posttest was reliable at conventional levels 

(Cronbach’s alpha = .68 at pretest, .83 at posttest; McDonald’s omega = .72 at pretest, .84 at 

posttest).  

Plausibility Judgments  

Plausibility judgments comprised the second primary outcome variable in this study and 

were captured using the plausibility perceptions measure (PPM; Lombardi & Sinatra, 2012; see 

Supplemental Materials, Appendix B). The plausibility perceptions measure is an instrument that 

consists of eight items that prompt participants to report the plausibility of the claim that human 

activity is responsible for climate change. For example, participants reported their perceived 

plausibility of the claim that, “Human caused global warming will lead to some impacts that are 

abrupt or irreversible, such as massive polar ice melt” and rated the plausibility on a scale from 1 

(greatly implausible or even impossible) to 10 (highly plausible). The items were originally taken 

from statements made by the Intergovernmental Panel on Climate Change (2007) and were 

modified to optimize readability (Lombard & Sinatra, 2012). For the current study, the 

plausibility perceptions measure was found to be reliable (Cronbach’s alpha = .95 at pretest, .95 

at posttest; McDonald’s omega = .95 at pretest, .95 at posttest).  

Distinctions between knowledge and plausibility. It is important to note distinctions 

between the knowledge and plausibility scales used in this study. Knowledge items prompted 

participants to state the extent to which climate scientists adhere to statements about climate 

change and could be confirmed as being more or less “correct,” while the plausibility perceptions 
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scale asked participants to report their personal stance regarding the plausibility of the human 

induced climate change hypothesis (Lombardi et al., 2013). For example, the knowledge items 

ask participants to rate whether they know that scientists view sea level rise as connected to 

climate change while the plausibility items ask participants to judge the extent to which they 

(themselves) find it plausible that human actions are contributing to sea level rise. In other words, 

the knowledge items measure conceptions of scientific consensus, which can be confirmed or 

disconfirmed with evidence, whereas plausibility perceptions cannot because they represent 

personal views of potential truth (see also Lombardi et al., 2013). Yet, we understand that the 

distinction between scientists’ and personal perceptions may not have been salient to 

participants, and that both scales might have captured the same construct. To empirically test 

whether this subtle distinction was, in fact, captured by our knowledge and plausibility scales, 

we tested whether plausibility perceptions and climate change knowledge were distinguishable 

by comparing fit indices of one-factor and two-factor confirmatory factor analyses (CFA) at 

pretest and posttest. We found that the one-factor models generally had poor fit, while the two 

factor models had acceptable fit for both outcomes at pretest and posttest (for details, see the 

Confirmatory Factor Analysis Discerning Plausibility from Knowledge section in the 

Supplementary Materials). Findings generally confirm the distinctions between plausibility and 

knowledge are measurable.  

Measurement Estimation Skills  

Estimation skills were captured using a measurement estimation task adapted from 

(Munnich et al., 2008; see Supplemental Materials, Appendix C) wherein participants estimate 

two sets of nine real-world quantities (e.g., the median US age, teacher salary, soft-drink 

calories) once before and once after an intervention. Scoring for this measure was as follows: 
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three points for an answer within 10% of the correct answer, two points for an answer between 

10% and 20%, one point for answers between 20% and 30% and zero points beyond 30% (see 

Hanson & Hogan, 2000; Hogan & Brezinski, 2003). The development of the scale persisted over 

several iterations of pilot tests (see “Development of Numerical Estimation Scale” in the 

Supplemental Materials), yet despite these efforts, the reliability of the estimation items with the 

undergraduate sample were not acceptable at traditional levels (Cronbach’s alpha = .44 at pretest, 

.54 at posttest; McDonald’s omega = .55 at pretest, .53 at posttest). The poor reliability of our 

scales as well as pre-existing measurement estimation scales (e.g., alpha = .52; Hogan & 

Brezinski, 2003) begin to suggest that measurement estimation skills may require multiple 

independent skills, are multidimensional, and do not load onto a single construct. Further, item-

level statistics based on classic and Partial Credit Rasch models using the “pairwise” package in 

R (Heine, 2014) revealed disordered threshold values, suggesting that for many items, higher 

estimation scores did not correspond with higher levels of the underlying construct (de Ayala, 

2009; for the full analysis, see the section, Item Response Theory (IRT) Models, in the 

Supplemental Materials). 

Potential Moderators 

Mathematics Self-Efficacy and Anxiety Questionnaire (MSEAQ) 

Participants’ mathematics-specific self-efficacy and anxiety were measured using the 

Mathematics Self-Efficacy and Anxiety Questionnaire (MSEAQ; May, 2009; see Supplemental 

Materials, Appendix D). The MSEAQ consists of 28 items that were divided into two subscales, 

mathematics self-efficacy (13 items) and mathematics anxiety (15 items). Construct validity was 

established in a prior study using factor analytic methods with an online sample and by 

establishing strong correlations with classic measures of mathematics anxiety (s-MARS) and 
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mathematics self-efficacy (see May, 2009). In the current study, the instrument was shown to be 

reliable overall (Cronbach’s alpha = .96; McDonald’s alpha = .94), as were the two subscales for 

mathematics self-efficacy (Cronbach’s alpha = .94; McDonald’s alpha = .93) and mathematics 

anxiety (Cronbach’s alpha = .93; McDonald’s alpha = .96). Average scores for the two subscales 

were computed and used in moderation analyses. 

Epistemic Dispositions 

Baseline epistemic dispositions were measured using the Actively Open-Minded 

Thinking scale (AOT; Stanovich & West, 1997; see Supplemental Materials, Appendix E). The 

Active Open-Minded Thinking scale is a measure of epistemic dispositions that consists of seven 

items. Participants reported their agreement with five statements (e.g., “Changing your mind is a 

sign of weakness”) on a scale from 1 (completely disagree) to 7 (completely agree; Chronbach’s 

alpha = .70; McDonald’s alpha = .71). This measure was included in our analyses to observe 

whether epistemic dispositions moderate conceptual change outcomes, as inferred from the 

Plausibility Judgments for Conceptual Change model (Lombardi, Nussbaum, et al., 2016). 

Interventions and Experimental Conditions 

Participants were randomly assigned to one of five conditions (see Figure 2 for a 

summary of procedures). Students were either assigned to (1) the EPIC task, (2) the EPIC task 

accompanied with an estimation skills modification that presents learners with strategies for 

using the given “hints,” (3) an EPIC task accompanied with an epistemic cognition modification, 

(4) an EPIC task accompanied by both estimation and epistemic cognition modifications, or (5) a 

comparison group in which participants were presented with an 817 word expository text about 

the greenhouse effect. The interventions and modifications are described below. 

[INSERT FIGURE 2 AROUND HERE] 
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The EPIC task required learners to estimate 12 climate change-related quantities before 

being presented with the scientifically accepted answer. Six of these items were taken from 

Ranney and Clark (2016) and asked participants to estimate mostly unitless proportions (e.g., 

“What is the change in the percentage of the world’s ocean ice cover since the 1960s?”; also see 

Table 1 for examples, and Supplemental Materials, Appendix F for all items). The remaining six 

items were created by the authors to be more mathematically challenging, requiring participants 

to estimate raw units of length, area, volume, mass, and temperature and included a “hint” that 

might be rescaled to better estimate the unknown quantity (see Table 1 for sample items and 

Supplemental Materials, Appendix G for all items). Newly created items were intended to be 

more challenging and require a greater level of numerical estimation skills to accurately 

estimate—each quantity was presented with a benchmark value or “hint” in order to enable 

participants the opportunity to mathematically manipulate the benchmarks in order to better 

estimate the unknown values. Note that the goal of this measure was to assess the impact of 

novel statistics, not to assess people’s estimation accuracy of climate change numbers. As such, 

students’ actual estimates of climate change quantities were not used in this study. 

[INSERT TABLE 1 AROUND HERE] 

The estimation skills modification appeared before the EPIC intervention for those 

assigned to this condition. The modification consisted of a 132-word text that provided direct 

instruction on how to use the “hints” embedded in half of the EPIC items to more accurately 

estimate unknown numbers and were followed by two interactive examples (see Table 1 for an 

excerpt, see Supplemental Materials Appendix H for full intervention). The epistemic cognition 

modification consisted of two types of prompts intended to activate epistemic aims. The first was 

embedded in the instructions that appeared just before the EPIC task and notified participants 
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that they would, “…be asked to reflect on the differences between your estimate and the true 

value in order to encourage you to reflect on your own understanding.” The second was a set of 

prompts consisting of open answer text-boxes that appeared after each of the twelve number 

estimates, prompting participants to “...reflect on the differences between your estimate and the 

true value. How does the true value change what you know about climate change or the way you 

think about climate change? Explain.” This prompt was intended to activate epistemic aims and 

encourage people to slow down and reflect on their own understanding in light of new data (see 

Table 1 for a sample or Supplemental Materials, Appendix I for full intervention). 

Participants who were assigned to the comparison group rather than EPIC or a 

modification to EPIC read an expository text to account for the time that they would have spent 

engaging in the intervention (see Supplemental Materials, Appendix J). Specifically, participants 

read an expository text called “The Enhanced Greenhouse Effect” created by Nussbaum and 

colleagues (2017) that explains how the greenhouse effect works and provides details regarding 

human contributions to the greenhouse effect. The full text is 817 words in length and has an 

11th grade Flesch-Kincaid readability level. 

Results 

Preliminary Analyses 

Preliminary analyses revealed no significant differences at pretest between conditions 

with regards to knowledge (F = 1.07, p = .368), plausibility judgments (F = 0.58, p = .665), 

estimation skill (F = 0.60, p = .665), and all moderating variables (all Fs < 1.54, all ps > .187). 

Skew ranged from -0.87 to 0.51 and kurtosis ranged from -0.46 to 0.56 for all outcome measures. 

Both are considered acceptable (Tabachnick & Fidell, 2013). Descriptive statistics for all main 
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outcomes and predictor variables by condition are presented in Table 2 and intercorrelations 

among variables are shown in Table 3. All analyses were performed using R Version 3.6.1. 

[INSERT TABLE 2 AND 3 AROUND HERE]  

Notably, there were improvements in knowledge and plausibility perceptions from pre-

test to posttest. Paired t-tests revealed significant improvements in knowledge (t(412) = 7.96, p < 

.001, d = 0. 31) and plausibility perceptions (t(412) = 3.17, p = .002, d = 0.11) from pre-test to 

post-test for the intervention conditions combined. Students in the comparison group also 

significantly improved from pretest to posttest with regards to plausibility perceptions (t(102) = 

2.15, p = .034, d = 0.12), but not with regards to knowledge (t(102) = 1.45, p = .151, d = 0.10). 

Figure 3 presents a visualization of the pretest and posttest means by condition.  

[INSERT FIGURE 3 AROUND HERE] 

Analytic Approach 

 To assess the magnitude of the effects of the EPIC intervention on knowledge compared 

with the control group (H1a) and relations among variants (H2a, H3a, H4a), we used an 

ANCOVA model testing four sets of planned contrasts with posttest knowledge as the outcome 

and prior knowledge as the covariate. The first contrast compared the four EPIC conditions with 

the comparison group (H1a). The remaining three contrasts included only the four variants of the 

EPIC conditions and compared mean posttest knowledge among students who were provided 

estimation instruction with those who were not (H2a), compared students who were provided 

epistemic cognition prompts with those who were not (H3a), and tested if there was an 

interaction between epistemic cognition prompts and estimation instruction (H4a; see Table 4 for 

contrast weights). These analyses were repeated with posttest plausibility judgments as the main 

outcome variable and prior plausibility judgments as the covariate (i.e., to test H1b, H2b, H3b, 
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and H4b). Prior to all analyses, we confirmed that there were no significant interactions between 

condition and pretest knowledge (p = .379) and condition and pretest plausibility (p = .296), 

suggesting that our data met ANCOVA and regression assumptions (Murnane & Willett, 2010).  

To explore whether motivational, emotional, or epistemic dispositional variables 

moderated the intervention effects (RQ5), we regressed knowledge, plausibility, and estimation 

skill outcomes on the condition to which students were assigned and included math anxiety, 

efficacy, or epistemic dispositions as a moderator in separate models, the interaction between the 

moderator and the condition assigned, and pretest scores as a covariate.  

The Effects of EPIC and Variants on Climate Change Knowledge (H1a–H4a) 

When posttest knowledge was the main outcome and prior knowledge was the covariate, 

we found a significant effect of the experimental conditions (F(4,510) = 5.41, p < .001, partial η2 

= .019). The first of the planned contrasts revealed significant improvement in posttest 

knowledge among people assigned to the EPIC conditions when compared with the comparison 

group (H1a; t = 6.25, p = .002, r = .14). Regarding the remaining knowledge contrasts, we found 

no statistically significant impact of the estimation intervention (H2a; t = 0.50, p = .614, r = .02), 

epistemic cognition prompts (H3a; t = 0.565, p = .565, r = .03), or interactions between them 

(H4a; t = -0.005, p = .996, r < .01). As such, we found support for our hypothesis (H1a) that 

EPIC interventions would improve knowledge revision, but did not find support for our 

hypotheses that variants of EPIC would contribute added knowledge benefits (H2a, H3a, H4a). 

The Effects of EPIC and Variants on Plausibility Perceptions (H1b–H4b) 

We then tested the same model with plausibility perceptions as the outcome and prior 

plausibility perceptions as the covariate, which revealed no significant effect of condition 

(F(4,510) = 1.35, p = .25, partial η2 = .009). Planned contrasts revealed no statistically significant 



SUPPORTING CLIMATE CHANGE UNDERSTANDING WITH NOVEL DATA          31 

effect of the EPIC interventions compared with the comparison group (H1b; t = 0.09,  p = .932, r 

< .01), no effect of the estimation intervention (H2b; t = 1.61, p = .109, r = .07), no effect of 

epistemic cognition prompts (H3b; t = -1.26, p = .209, r = .06), nor interactions between 

estimation instruction and epistemic cognition prompts (H4b; t = 0.62, p = .535, r = .03). As 

such, we found no support for our hypotheses that the EPIC intervention or variants improved 

plausibility perceptions (H1b, H2b, H3b, H4b). 

[INSERT TABLE 4 AROUND HERE] 

Moderators of Knowledge, Plausibility, and Estimation Skill (RQ5) 

With regards to our fifth research question, we explored whether math anxiety, self-

efficacy, or epistemic dispositions would moderate relations between treatment effects and 

conceptual change outcomes. Based on Lombardi, Nussbaum, et al’s (2016) model positing that 

topic emotions, motivation, and epistemic dispositions are factors that predict more explicit 

plausibility judgments, and thus higher potential for conceptual change, we tested whether 

mathematics anxiety, mathematics self-efficacy, and active open-minded thinking moderated the 

effects of the EPIC intervention and its four variants in linear regression models. As such, we 

regressed knowledge, plausibility, and estimation skill outcomes on the condition to which 

students were assigned, the moderator (math anxiety, self-efficacy, or epistemic dispositions), 

the interaction between the moderator and the condition assigned and included pretest scores as a 

covariate. We used indicator variables to signify different variants of the EPIC conditions with 

the comparison condition as a reference category. We used robust heteroscedasticity-consistent 

standard error estimations and centered all continuous variables around the mean prior to 

analyses (e.g., Cohen et al., 2013).  
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When the outcome was posttest knowledge, we found that EPIC conditions significantly 

outperformed the comparison group (see Table 5 for all coefficients and p-values). We also 

found that active open-minded thinking was a significant predictor of posttest knowledge and 

moderated the effects of the EPIC intervention with both modifications, before and after 

including prior knowledge as a covariate. That is, the EPIC condition modified with both 

estimation instruction and epistemic cognition prompts had stronger effects among individuals 

with higher open-minded thinking. Compared with the control group, participants in the twice 

modified EPIC condition had 0.26 standard deviations more post-test knowledge than the 

comparison group, and these effects were stronger (0.48 standard deviations) for those with 

active open-minded thinking levels one standard deviation above the mean. No other moderating 

effects or main effects of math anxiety or self-efficacy on posttest knowledge were found. 

[INSERT TABLE 5 AROUND HERE] 

When the main outcome was posttest plausibility judgments, we found a significant and 

positive main effect of active open-minded thinking (see Table 6 for all coefficients and p-

values). We also found that, despite finding no main effects of mathematics self-efficacy, it was 

a significant and positive moderator of posttest plausibility judgments, yet this finding was only 

significant after adjusting for prior plausibility. No additional main effects or moderation effects 

were found, before or after adjusting for prior plausibility.  

[INSERT TABLE 6 AROUND HERE] 

We also tested whether math anxiety, self-efficacy, or epistemic dispositions moderated 

the effect of the EPIC intervention variants on post-test estimation accuracy. Findings were 

mixed. Mathematics self-efficacy was found to significantly moderate the effects the EPIC 

intervention supplemented with both the estimation and epistemic cognition modifications when 
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the outcome was post-test estimation skill (β = 0.26, SE = 0.13, p = .041), but not after adjusting 

for prior knowledge (p = .105). We also found that active open-minded thinking was a positive 

predictor of posttest estimation skill, before adjusting for prior estimation skill (β = 0.26, SE = 

0.13, p = .041), but not after (p = .101), and there was a consistent moderating effect of open-

minded thinking on the effects of the twice modified EPIC intervention before (β = 0.263, SE = 

0.13, p = .050) and after (β = 0.259, SE = 0.12, p = .039) adjusting for prior estimation skill. We 

also found consistent negative effects of the EPIC intervention variants on posttest estimation 

skill. However, these findings should be interpreted with caution given that the estimation skill 

measure was not found to be reliable at conventional levels at either pretest or posttest, and there 

were serious issues with the how the partial credit scores bared out (i.e., disordered threshold 

values from partial credit Rasch models; see Supplemental Materials for a full report). As such, 

full results from this moderator analysis are presented in the Supplemental Materials to minimize 

the risk of spreading unwarranted conclusions (Table S2 in the Supplementary Materials for 

coefficients and p-values).  

Discussion 

Prior research suggests that just a handful of surprising numbers can shift people’s 

conceptions about climate change. The current study attempted to recreate previous findings 

using a subset of items from a valid and reliable instrument to test specific misconceptions about 

climate change, and additionally focused on testing the impact of two supplementary 

interventions—one to support numerical estimation skills, and another to activate epistemic 

cognition—both designed to intensify the benefits of the learning that occurs when engaging 

with surprising data using the EPIC intervention. Here, we discuss the results and how they 

pertain to the Plausibility Judgments for Conceptual Change model.  
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Exposure to Surprising Numerical Data Can Support Conceptual Change  

We found a significant effect of the EPIC intervention on undergraduate students’ climate 

change knowledge. On average, the four EPIC groups performed about a third of a standard 

deviation better than the comparison group on the seven-item knowledge scale at posttest. Such 

evidence is consistent with prior findings that demonstrate the effectiveness of EPIC for climate 

change learning (e.g., Ranney & Clark, 2016), providing further support for the idea that 

exposure to novel numerical information about climate change can support conceptual change.  

However, we found no significant impact of the EPIC intervention on climate change 

plausibility perceptions. One explanation for this may be that the expository text used as the 

comparison condition, while not effective at correcting specific misconceptions about climate 

change, was successful at shifting climate change plausibility perceptions from pretest to posttest 

(d = 0.12) at levels that were similar to the treatment groups (d = 0.11). While all conditions 

shifted plausibility judgments, only the EPIC interventions significantly shifted knowledge. This 

suggests that plausibility perceptions may be more malleable than misconceptions. Plausibility 

perceptions might be swayed by a convincing expository text while shifting misconceptions may 

require multiple encounters with belief-inconsistent information and nudges to inspire 

reappraisals, leading to the adoption of new conceptions (Lombardi, Nussbaum, et al., 2016). 

No Overall Impact of an Estimation Strategies Intervention  

We found no evidence that enhancing the EPIC intervention with numerical estimation 

instruction improved the effects of the EPIC intervention on climate change knowledge or 

plausibility perceptions overall. The estimation intervention itself was intended to promote use of 

measurement estimation strategies (Brown & Siegler, 2001; Dowker, 2005; Joram et al., 1998), 

elicit heightened levels of quantitative reasoning, and thus explicit validation checks and 
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plausibility judgments of novel data (Lombardi, Nussbaum, et al., 2016; Richter & Maier, 2017). 

However, it may be the case that these strategies were naturally employed by all participants who 

estimated numbers, regardless of condition. Or it could be that an entirely different set of 

strategies may be important for interpreting the scientifically accepted values when presented. 

Future studies might look more carefully at the mathematical skills that individuals draw from 

when estimating and interpreting policy-relevant quantities, and whether these skills differ from 

estimates of policy-irrelevant measurements (e.g., length measures; Joram et al., 1998).  

No Overall Impact of Prompts to Activate Epistemic Aims 

Findings revealed that prompts to activate epistemic aims had no detectable effect on 

undergraduate students’ climate change knowledge or plausibility perceptions overall. This may 

suggest that our modified intervention was not effective in prompting active reflection and 

elaboration on belief-inconsistent information (e.g., Lombardi, Nussbaum, et al., 2016; Richter & 

Maier, 2017) at levels above the baseline EPIC intervention. The intervention may have been 

ineffective because the prompts could have elicited non-epistemic reflections (e.g., on the effects 

of climate change), created fatigue among participants that outweighed any benefits, elicited 

reflection on existing understandings without integrating the given scientific evidence. Future 

research studies might use simpler, fewer, and more targeted reflection prompts that elicit 

reflection on more specific aspects of knowledge. Another explanation is that prompts to reflect 

on corrective information may have led some participants to double-down on their existing 

stance and increase resistance to persuasion. Though this effect, sometimes termed “the backfire 

effect,” is rare (e.g., Jacobson et al., 2021), researchers should be aware of the possibility of 

provoking counterproductive reactance effects when designing interventions. 
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To date, efforts to design micro-interventions intended to shift short-term epistemic aims 

and long-term epistemic dispositions are only emerging. Although there is some evidence that 

short, single-session interventions can be effective at shifting epistemic beliefs or epistemic aims 

(see e.g., Cartiff et al., 2021; Kienhues, et al., 2016), much of this work was conducted in a very 

different setting than ours and, to our knowledge, none measured whether prompts to activate 

epistemic aims were associated with learning outcomes, which was the main goal of our 

research. Further, a recent metanalysis suggests that epistemic cognition interventions are not as 

effective with college-level populations when compared with adults or K-8 students (Cartiff et 

al., 2021), which may explain the small effects of our epistemic cognition intervention.  

No Detected Interactions Between Epistemic Cognition and Estimation Skill Conditions  

We found no significant interactions between intervention conditions, likely due to the 

very small effects of the estimation and epistemic cognition interventions. With improved 

intervention design, future research might explore whether such an interaction might occur. 

Moderating Effects of Epistemic Dispositions 

We found that epistemic dispositions significantly moderated conceptual change 

outcomes when learning from novel quantitative information, as predicted by the Plausibility 

Judgments for Conceptual Change model (Lombardi, Nussbaum, et al., 2016). Specifically, we 

found that open-minded epistemic dispositions were associated with climate change knowledge 

and plausibility, and moderated the effects of the twice modified EPIC condition on post-test 

knowledge. That is, individuals with higher levels of active open-minded thinking learned more 

about climate change when assigned to receive estimation instruction and prompts to activate 

epistemic cognition compared with those who did not. Openness to reason with novel evidence 

seems to prepare people to more explicitly consider the plausibility of novel information, help 
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them transition from their existing knowledge base to even more knowledge, and supports 

receptivity to interventions that facilitate such knowledge revision. Specifically, when presented 

with tools to evaluate novel quantities and prompted to reflect on their knowledge discrepancies, 

individuals with higher levels of open-minded thinking may be better equipped to make use of 

quantitative skills when reflecting on novel evidence. 

Our findings also suggest that the benefits of instruction to support estimation skills may 

face some epistemic barriers. The prior success of numeracy interventions highlights the 

important role of associating and analogizing between mathematical and non-symbolic 

knowledge (Siegler, 2016), however much of this prior research studies individuals estimating 

quantities with fairly neutral referents (e.g., the distance between two cities), which has 

important tradeoffs for learning. On the one hand, estimating more neutral quantities may pose 

fewer obstacles to learning mathematics because neutral quantities are likely to elicit fewer 

expectations and attitudes aligned with people’s socio-political belief systems, which can 

interfere with learning (e.g., Authors, 2020). On the other hand, only engaging with neutral data 

can reinforce perceptions that mathematical strategies have few relevant applications, and these 

strategies might feel less personally meaningful for students than those applied to understand 

socio-scientific issues. Our research shows that socio-scientific issues may pose additional 

barriers to learning, but these barriers might be overcome with prompts to reflect, justify, and 

consider belief-inconsistent information among individuals who are open to such prompts.  

We should also note, however, that when the outcome was plausibility perceptions or 

estimation skill, we found no consistent moderating effects. Compared with the stable indicators 

of emotion, motivation, and epistemic dispositions, future research might explore whether 
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context-sensitive, state-based motivational emotional outcomes play a role in knowledge and 

plausibility revision (e.g., surprise), and explore causal relationships therein.  

Limitations 

The findings of this study are necessarily limited by several factors. First, while the 

pretest-posttest comparison group design that we employ is internally valid (see, e.g., Campbell 

& Stanley, 1963; Shadish et al., 2002), the external validity may be questionable. The main 

analytical sample identified as mostly White, female, had a higher median age than the general 

population of undergraduate students, and engaged with information in a controlled survey 

environment, limiting generalization to other contexts. Future research might modify and scale-

up the central interventions for use in settings that are less controlled, more realistic, and with a 

more diverse population of learners that are better representative of undergraduate populations in 

the USA. Third, as noted, the limited conclusions drawn from the estimation skill measures 

should be taken with caution. As with prior attempts to capture measurement estimation skills 

(e.g., Hogan & Brezinski, 2003), the scales we created were not reliable at conventional levels 

(McDonald’s omega < .60) and had inconsistent threshold values for partial credit scores. Future 

research might investigate the potential multidimensionality of measurement estimation and 

refrain from using potentially unreliable scales as the basis for conclusions. Fourth, there are 

certain contexts in which the validity of self-report measures are called into question (Stone et 

al., 2000). Particularly when individuals are asked to report their stance on topics that reflect 

their skills, abilities, or other sensitive topics, individuals tend to give responses that are socially 

desirable (e.g., Fowler, 1995; Fowler et al., 1998; Stone et al., 2000); as such, it could be the case 

that items from the plausibility perceptions measures led individuals to report in socially 

desirable ways. Fifth, we did not gather evidence of whether epistemic aims were influenced by 
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the epistemic cognition prompts. Future research might seek to design measures that are sensitive 

to whether people have epistemic aims compared with non-epistemic aims. Sixth, our knowledge 

measure captured individuals’ knowledge of scientific consensus around climate change issues 

but was unable to identify individuals who might have agreed that there is a consensus among 

scientists but distrust their conclusions. Future studies might consider including measures that 

are more sensitive to such distrust.  

Support for the Plausibility for Conceptual Change Model and Two-Step Model 

As predicted by the Plausibility Judgments for Conceptual Change model (Lombardi, 

Nussbaum, et al., 2016), findings from this study indicate that epistemic dispositions and 

numerical estimation skills may play a role in supporting conceptual change. Results support the 

idea that active open-minded thinking comprises an important factor that moderates knowledge 

revision processes, particularly for those presented with both estimation instruction and 

epistemic prompts (c.f. Sinatra et al., 2003). These findings provide support for Lombardi, 

Nussbaum, et al.’s (2016) Plausibility Judgments for Conceptual Change model, showing that, 

indeed, actively open-minded dispositions are important for supporting individuals’ explicit 

assessments of numerical information and potentially for revising their conceptions as a result.  

These findings are also consistent with the Two-Step model of source validation (Richter 

& Maier, 2017). We found that scientific knowledge at posttest was higher among people with 

greater willingness to reason with novel evidence, especially for those prompted to carefully 

consider quantitative evidence and explicitly process novel evidence. These learners may have 

more explicitly considered knowledge-inconsistent evidence and this explicit processing may 

have been boosted by the data evaluation skills emphasized in the interventions, thus leading to 

greater knowledge revision and fewer misconceptions as a result. 
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Implications for Instruction 

The interventions used in this study might be adapted for both mathematics and science 

classrooms. The current EPIC intervention had only a modest impact on undergraduate students’ 

knowledge overall, but such an intervention might have greater impacts if integrated into regular 

coursework over a longer duration of time. Secondary or undergraduate students might be 

encouraged to use analytic strategies to estimate important numbers as they learn about various 

topics in science or apply mathematical strategies to estimate relevant quantities in mathematics. 

In this way, mathematics teachers might use the EPIC approach to encourage their students to 

apply mathematical reasoning skills to understand the world, and science teachers might use this 

approach to encourage their students to engage with key scientific quantities related to their 

instruction—offering interdisciplinary practices that bridge mathematical and scientific 

reasoning skills. Another key finding in this study is that active open-minded thinking is an 

important epistemic disposition that facilitates scientific learning from numerical data. As such, 

teachers and professors might consider emphasizing to students the importance of keeping an 

open mind and the importance of examining new types of evidence, even if that evidence goes 

against their beliefs (Stanovitch & West, 1997).  

Findings from this study contribute to better understanding the extent to which 

individuals shift their conceptions about climate change based on just a handful of novel 

numbers and illuminate mechanisms that underlie such shifts. By creating and testing 

instructional interventions, this study also explores a collection of strategies for better preparing 

people with these skills needed to navigate the minefield of deceptive data found in today’s 

online news landscape. 
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Figure 1  

The Plausibility Judgments for Conceptual Change Model.  

 
Note. Image adapted from Lombardi, Nussbaum, et al., (2016). Heuristic rules and Epistemic 

cognition are represented in bold because they are key factors that are manipulated in this study. 
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Figure 2  

Visual Representation of the Survey Flow, Materials, and Procedures.  
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Figure 3  

Mean Climate Change Knowledge and Plausibility Perceptions by Experimental Condition.  

 

Note. Control = comparison condition in which participants read an expository text. EPIC = central 

intervention in which participants estimated climate change quantities before integrating the 

scientifically accepted estimate. EPIC + EST represents the intervention supplemented with estimation 

instruction. EPIC + EC represents the intervention supplemented with prompts to activate epistemic 

cognition. EPIC + EC + EST represents the intervention with both epistemic cognition and estimation 

skills modifications. Significance (* p < .05) has been Benjamini-Hochberg-adjusted for post-test 

subgroup comparisons. Error bars represent standard errors. 

 
  



SUPPORTING CLIMATE CHANGE UNDERSTANDING WITH NOVEL DATA          54 

Table 1  

Sample Items from the EPIC Intervention and Modifications to the Intervention. 

Sample EPIC Items 

Source # of items Sample item Correct Answer 

Ranney & 
Clark (2016) 

6 What is the change in percentage of the world’s ocean ice 
cover since the 1960s? (units in %) 

40% Decrease 

Researcher 
created 

6 What was the average Arctic Sea ice thickness in 2008? 
Hint: Arctic ice thickness was 3.64 meters in 1980 

1.89 meters 

Excerpt from Numerical Estimation Strategies Modification 

Numbers that you already know can help you estimate numbers that you do not know. For example, if you know 
that about 300 pennies fit in a small, 8oz milk carton, you can use this information to estimate the number of 
pennies that fit in a larger container… 
  
When using benchmarks, you may want to round values to make mental computation easier. For example... 

Excerpt from Epistemic Cognition Instruction Modification 

...Please reflect on the differences between your estimate and the true value. How does the true value change what 
you know about climate change or the way you think about climate change? Explain. 
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Table 2               

Descriptives by Condition for the Main Analytic Sample of N = 516 Undergraduate Students. 

 
Min, 
Max α 

Full Sample 
(n = 516) 

Comparison 
Group 

(n = 103) 
EPIC 

(n = 103) 
EPIC+EC 
(n = 103) 

EPIC+EST 
(n = 104) 

EPIC+EC 
+EST 

(n = 103) 
   Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Knowledge 
(pre) 1, 5 .68 3.88 0.60 3.82 0.58 3.98 0.56 3.84 0.66 3.93 0.53 3.81 0.66 

Knowledge 
(post) 1, 5 .83 4.08 0.74 3.88 0.66 4.20 0.72 4.06 0.78 4.19 0.68 4.06 0.80 

Knowledge 
gain 
(post − pre) 

-4, 4 na 0.20 0.57 0.06 0.42 0.22 0.50 0.21 0.73 0.26 0.49 0.25 0.65 

Plausibility 
perceptions 
(pre) 

1, 10 .95 7.87 1.97 7.79 1.99 7.93 2.07 8.01 1.92 7.98 1.86 7.65 1.99 

Plausibility 
perceptions 
(post) 

1, 10 .95 8.10 2.01 8.02 1.92 8.17 2.20 7.98 2.08 8.32 1.79 7.99 2.05 

Estimation 
Skill (pre) 0, 3 .44 0.90 0.45 0.90 0.44 0.84 0.41 0.90 0.46 0.93 0.48 0.91 0.47 

Estimation 
Skill (post) 0, 3 .54 1.03 0.41 1.11 0.39 1.02 0.38 0.97 0.44 1.05 0.36 1.01 0.45 

Active open 
mindedness 
(AOT) 

1, 5 .70 4.84 0.86 4.74 0.81 5.01 0.89 4.83 0.83 4.83 0.89 4.78 0.85 

Mathematics 
self-efficacy 1, 5 .94 3.27 0.87 3.31 0.97 3.20 0.81 3.33 0.83 3.24 0.86 3.29 0.87 

Mathematics 
anxiety 1, 5 .93 2.98 0.86 2.98 0.90 2.95 0.84 2.98 0.90 2.95 0.81 3.03 0.87 

 
Note. EPIC represents the treatment conditions in which participants estimated numbers about climate change 

before being shown the true value. EST and EC are modifications to this intervention. EST signifies conditions that 

employed the estimation instruction modification. EC represents conditions that employed prompts to activate 

epistemic cognition.  
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Table 3 

Intercorrelations Among Variables. 

 1 2 3 4 5 6 7 8 

1. Knowledge (pre)         

2. Knowledge (post) .65***        

3. Plausibility (pre) .65*** .60***       

4. Plausibility (post) .55*** .68*** .76***      

5. Estimation skill 
(pre) .08 .17*** .13** .14**     

6. Estimation skill 
(post) .12** .27*** .18*** .28*** .32***    

7. Active Open-
minded Thinking 
(AOT) 

.41*** .51*** .43*** .48*** .22*** .26***   

8. Math self-efficacy .16*** .14**  .15*** .16*** .09* .08 .08  

9. Math anxiety -.01 -.03 -.05 -.05 .01 .02 -.02 .63*** 

 
Note. * p < .05. ** p < .01. *** p < .001 
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Table 4 

            
A Summary of Planned Contrasts For ANCOVA Analyses Testing Hypotheses 1–4. 

  Contrast Coefficients 
Knowledge as 

Outcome  
Plausibility as 

Outcome  

Hypothesis 
Tested Summary 

EPIC 
(n=103) 

EPIC+ 
EC 

(n=103) 
EPIC+EST 

(n=104) 

EPIC+ 
EC+EST 
(n=103) 

Comparison 
Group (n=103) t p r t p r 

H1 EPIC conditions vs 
comparison group 

1 1 1 1 -4 6.25 .002 .135 0.09 .932 .003 

H2 Estimation Instruction vs 
No Estimation Instruction 

-1 -1 1 1 0 0.50 .614 .022 1.61 .109 .071 

H3 Epistemic Cognition 
Prompts vs No Epistemic 
Cognition Prompts 

-1 1 -1 1 0 0.57 .565 .025 -1.26 .209 .056 

H4 Interaction Between 
Estimation Instruction and 
Epistemic Cognition 
Prompts 

1 -1 -1 1 0 -0.01 .996 .000 0.62 .535 .027 

 
Note. Results present coefficients from two ANCOVA models, one with posttest knowledge as the main outcome and pretest knowledge as the 

covariate, and one with posttest plausibility perceptions as the outcome and pretest plausibility as the covariate. EST and EC are modifications to 

this intervention. EST signifies conditions that employed the estimation instruction modification. EC represents conditions that employed prompts 

to activate epistemic cognition. Bold values represent effects that are significant at the α < .0125 level, which uses an unordered Bonferroni 

correction to account for the four tests (Rosenthal & Rubin, 1984). Effect size was calculated using r = t ² / (t ² + df) (Howell, 2009).
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Table 5 
Effects of Experimental Conditions on Post-Test Knowledge and The Moderating Effects of Math Efficacy, Math 
Anxiety, and Active Open-Minded Thinking. 

Climate Change Knowledge at Posttest: β (SE) p 

 No Moderator 
Math Self-Efficacy  

as Moderator 
Math Anxiety  
as Moderator 

Actively Open-
Minded Thinking as 

Moderator 
Prior Knowledge  0.647***  0.637***  0.646***  0.527*** 

  (0.039)  (0.040)  (0.040)  (0.042) 
  <.001  <.001  <.001  <.001 

EPIC 0.426** 0.259** 0.444*** 0.266** 0.424** 0.259** 0.267* 0.199* 

 (0.132) (0.089) (0.131) (0.090) (0.133) (0.090) (0.118) (0.089) 

 .002 .004 .001 .004 .002 .005 .024 .026 
EPIC+EC 0.236 0.216* 0.241 0.219* 0.236 0.216 0.185 0.198 

 (0.138) (0.109) (0.139) (0.112) (0.139) (0.110) (0.120) (0.103) 

 .089 .048 .085 .050 .089 .051 .124 .055 
EPIC+EC+EST 0.241 0.253* 0.241 0.251* 0.243 0.257* 0.234* 0.256** 

 (0.140) (0.101) (0.139) (0.102) (0.141) (0.102) (0.114) (0.092) 

 .085 .013 .084 .015 .085 .013 .041 .006 
EPIC+EST 0.412** 0.296*** 0.425*** 0.302*** 0.414** 0.297*** 0.362** 0.295*** 

 (0.127) (0.087) (0.126) (0.087) (0.128) (0.087) (0.115) (0.087) 

 .002 .001 .001 .001 .002 .001 .002 .001 
Moderator   0.108 0.002 0.071 0.013 0.456*** 0.205*** 

   (0.087) (0.054) (0.084) (0.054) (0.069) (0.060) 

   0.214 0.974 0.401 0.806 <.001 0.001 
EPIC*Moderator   0.040 0.054 -0.140 -0.017 0.062 0.125 

   (0.126) (0.081) (0.121) (0.079) (0.102) (0.085) 
   .750 .505 .251 .831 .547 .144 

(EPIC+EC)*Moderator   -0.118 -0.041 -0.210 -0.070 0.098 0.140 

   (0.135) (0.117) (0.146) (0.122) (0.116) (0.104) 

   .384 .731 .150 .566 .397 .179 
(EPIC+EC+EST)*Moder
ator   0.152 0.116 -0.103 -0.078 0.218* 0.222* 

   (0.123) (0.091) (0.128) (0.091) (0.107) (0.089) 

   .215 .204 .422 .392 .042 .013 
(EPIC+EST)*Moderator   0.125 0.092 -0.021 -0.015 -0.113 -0.052 

   (0.12) (0.083) (0.115) (0.080) (0.113) (0.091) 

   .296 .271 .857 .849 .319 .567 
Intercept -0.263** -0.205*** -0.268** -0.206*** -0.264** -0.205*** -0.210** -0.192*** 

 (0.089) (0.056) (0.090) (0.057) (0.090) (0.056) (0.078) (0.056) 

 .004 <.001 .004 <.001 .004 <.001 .008 .001 
 
Note. ~p < 0.1; *p < 0.05; **p < 0.01; ***p < .001. All moderators and knowledge variables were standardized 
around the mean prior to analyses. Boldfaced values indicate statistically significant results for predictors. 
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Table 6 
Effects of Experimental Conditions on Post-Test Plausibility and The Moderating Effects of Math Efficacy, Math 
Anxiety, and Active Open-Minded Thinking. 

Plausibility at Posttest: β (SE) p 

 No Moderator 

Math Self-
Efficacy  

as Moderator 
Math Anxiety  
as Moderator 

Actively Open-
Minded Thinking as 

Moderator 
Prior Plausibility  0.765***  0.761***  0.763***  0.686*** 

  (0.040)  (0.041)  (0.041)  (0.051) 

  <.001  <.001  <.001  <.001 
EPIC 0.072 0.015 0.094 0.017 0.072 0.015 -0.070 -0.015 

 (0.144) (0.082) (0.142) (0.082) (0.145) (0.083) (0.127) (0.074) 

 .618 .859 .510 .833 .618 .852 .584 .837 
EPIC+EC -0.020 -0.105 -0.021 -0.112 -0.019 -0.105 -0.073 -0.113 

 (0.139) (0.087) (0.142) (0.090) (0.140) (0.089) (0.119) (0.082) 
 .887 .229 .880 .214 .890 .239 .537 .170 

EPIC+EC+EST -0.017 0.037 -0.015 0.035 -0.013 0.036 -0.033 0.029 

 (0.138) (0.077) (0.137) (0.077) (0.139) (0.078) (0.114) (0.072) 
 .903 .632 .912 .653 .923 .645 .771 .684 

EPIC+EST 0.151 0.077 0.161 0.076 0.148 0.075 0.098 0.069 

 (0.129) (0.090) (0.129) (0.089) (0.130) (0.089) (0.111) (0.085) 

 .243 .391 .213 .393 .254 .400 .375 .421 
Moderator   0.168 0.014 0.056 0.013 0.483*** 0.154* 

   (0.086) (0.038) (0.082) (0.048) (0.084) (0.069) 

   .053 .715 .493 .788 <.001 .026 
EPIC*Moderator   <0.001 0.005 -0.048 0.007 -0.065 -0.066 

   (0.131) (0.074) (0.127) (0.083) (0.158) (0.127) 

   .999 .950 .703 .937 .681 .601 
(EPIC+EC)*Moderator   -0.048 0.104 -0.209 -0.043 0.052 0.120 

   (0.142) (0.099) (0.140) (0.120) (0.124) (0.102) 

   .738 .296 .137 .721 .675 .240 
(EPIC+EC+EST)*Moderator   0.104 0.128* -0.113 0.004 0.102 0.079 

   (0.117) (0.058) (0.119) (0.071) (0.114) (0.078) 

   .373 .027 .344 .953 .372 .308 
(EPIC+EST)*Moderator   -0.089 -0.075 -0.159 -0.083 -0.064 0.036 

   (0.125) (0.108) (0.113) (0.103) (0.121) (0.107) 
   .479 .491 .160 .423 .600 .739 

Intercept -0.037 -0.005 -0.044 -0.006 -0.038 -0.005 0.019 0.010 

 (0.095) (0.051) (0.095) (0.052) (0.095) (0.052) (0.079) (0.048) 
 .693 .923 .642 .913 .693 .922 .806 .838 

 
Note. *p < 0.05; **p < 0.01; ***p < .001. All moderators and plausibility variables were standardized around the 
mean prior to analyses. Boldfaced values indicate statistically significant results for predictors. 
 


